Search results

Search for "asymmetric synthesis" in Full Text gives 197 result(s) in Beilstein Journal of Organic Chemistry.

Trifluoromethylated hydrazones and acylhydrazones as potent nitrogen-containing fluorinated building blocks

  • Zhang Dongxu

Beilstein J. Org. Chem. 2023, 19, 1741–1754, doi:10.3762/bjoc.19.127

Graphical Abstract
  • programs. Synthesis of trifluoromethylpyrazoles from trifluoroacetaldehyde hydrazones. Synthesis of polysubstituted pyrazolidines and pyrazolines. Asymmetric synthesis of 3-trifluoromethyl-1,4-dihydropyridazines reported by Rueping et al. [39]. Synthesis of 3-trifluoromethyl-1,4-dihydropyridazine with
PDF
Album
Review
Published 15 Nov 2023

N-Sulfenylsuccinimide/phthalimide: an alternative sulfenylating reagent in organic transformations

  • Fatemeh Doraghi,
  • Seyedeh Pegah Aledavoud,
  • Mehdi Ghanbarlou,
  • Bagher Larijani and
  • Mohammad Mahdavi

Beilstein J. Org. Chem. 2023, 19, 1471–1502, doi:10.3762/bjoc.19.106

Graphical Abstract
  • organosulfur chemistry, sulfenylating agents are an important key in C–S bond formation strategies. Among various organosulfur precursors, N-sulfenylsuccinimide/phthalimide derivatives have shown highly electrophilic reactivity for the asymmetric synthesis of many organic compounds. Hence, in this review
PDF
Album
Review
Published 27 Sep 2023

Synthesis of ether lipids: natural compounds and analogues

  • Marco Antônio G. B. Gomes,
  • Alicia Bauduin,
  • Chloé Le Roux,
  • Romain Fouinneteau,
  • Wilfried Berthe,
  • Mathieu Berchel,
  • Hélène Couthon and
  • Paul-Alain Jaffrès

Beilstein J. Org. Chem. 2023, 19, 1299–1369, doi:10.3762/bjoc.19.96

Graphical Abstract
PDF
Album
Review
Published 08 Sep 2023

Selective construction of dispiro[indoline-3,2'-quinoline-3',3''-indoline] and dispiro[indoline-3,2'-pyrrole-3',3''-indoline] via three-component reaction

  • Ziying Xiao,
  • Fengshun Xu,
  • Jing Sun and
  • Chao-Guo Yan

Beilstein J. Org. Chem. 2023, 19, 1234–1242, doi:10.3762/bjoc.19.91

Graphical Abstract
  • multicomponent reactions have been successfully developed to construct multifunctionalized or polycyclic spirooxindoles. For example, Zhang successfully developed a recyclable bifunctional cinchona/thiourea-catalyzed four-component Michael/Mannich cyclization sequence for the asymmetric synthesis of
PDF
Album
Supp Info
Full Research Paper
Published 22 Aug 2023
Graphical Abstract
  • years ago, the concept became increasingly accepted and popular only by the last decade of the last century [2][3]. Nowadays, organocatalysis is especially applied to asymmetric synthesis and a huge number of organocatalysts has been introduced in last three decades for the asymmetric synthesis of
PDF
Album
Review
Published 28 Jun 2023

Photoredox catalysis enabling decarboxylative radical cyclization of γ,γ-dimethylallyltryptophan (DMAT) derivatives: formal synthesis of 6,7-secoagroclavine

  • Alessio Regni,
  • Francesca Bartoccini and
  • Giovanni Piersanti

Beilstein J. Org. Chem. 2023, 19, 918–927, doi:10.3762/bjoc.19.70

Graphical Abstract
  • position via a sequential electron transfer–proton transfer (ET/PT) [52][53][54][55][56][57][58][59]. With our ongoing interest of establishing new methods for the asymmetric synthesis of nonproteinogenic tryptophan derivatives as well as their associated indole alkaloid natural products [60][61][62][63
PDF
Album
Supp Info
Full Research Paper
Published 26 Jun 2023

A new oxidatively stable ligand for the chiral functionalization of amino acids in Ni(II)–Schiff base complexes

  • Alena V. Dmitrieva,
  • Oleg A. Levitskiy,
  • Yuri K. Grishin and
  • Tatiana V. Magdesieva

Beilstein J. Org. Chem. 2023, 19, 566–574, doi:10.3762/bjoc.19.41

Graphical Abstract
  • complex. Solubility of the t-Bu-containing ligand and its Schiff base complexes is increased, facilitating scaling-up the reaction procedure and isolation of the functionalized amino acid. Keywords: asymmetric synthesis; chiral auxiliaries; cysteine derivatives; Ni–Schiff base complexes; voltammetry
  • testing; Introduction Asymmetric synthesis of functionalized amino acids is a subject of intense research because these compounds are of great demand for pharmaceutical industry, health care, and food production [1][2][3]. Various approaches to enantiomerically enriched amino acids have been developed
PDF
Album
Supp Info
Full Research Paper
Published 27 Apr 2023

Asymmetric synthesis of a stereopentade fragment toward latrunculins

  • Benjamin Joyeux,
  • Antoine Gamet,
  • Nicolas Casaretto and
  • Bastien Nay

Beilstein J. Org. Chem. 2023, 19, 428–433, doi:10.3762/bjoc.19.32

Graphical Abstract
PDF
Album
Supp Info
Letter
Published 03 Apr 2023

Strategies to access the [5-8] bicyclic core encountered in the sesquiterpene, diterpene and sesterterpene series

  • Cécile Alleman,
  • Charlène Gadais,
  • Laurent Legentil and
  • François-Hugues Porée

Beilstein J. Org. Chem. 2023, 19, 245–281, doi:10.3762/bjoc.19.23

Graphical Abstract
PDF
Album
Review
Published 03 Mar 2023

1,4-Dithianes: attractive C2-building blocks for the synthesis of complex molecular architectures

  • Bram Ryckaert,
  • Ellen Demeyere,
  • Frederick Degroote,
  • Hilde Janssens and
  • Johan M. Winne

Beilstein J. Org. Chem. 2023, 19, 115–132, doi:10.3762/bjoc.19.12

Graphical Abstract
  • extensively explored, is in asymmetric synthesis, although this should be quite feasible. We hope this review can help inspire such future developments. a) 1,4-Dithiane-type building blocks that can serve as C2-synthons and b) examples of complex target structures that have been prepared using 1,4-dithiane
PDF
Album
Review
Published 02 Feb 2023

Design, synthesis, and evaluation of chiral thiophosphorus acids as organocatalysts

  • Karen R. Winters and
  • Jean-Luc Montchamp

Beilstein J. Org. Chem. 2022, 18, 1471–1478, doi:10.3762/bjoc.18.154

Graphical Abstract
  • thioacid hybrid-CPAs (Scheme 5) [31]. The transfer hydrogenation of 2-phenylquinoline with a Hantzsch ester 19 is a test reaction commonly used in asymmetric synthesis. The best performing of Guinchard's thiophostones 18 was the pivalate ester (R1 = t-BuC(O)) with an 86% yield of 20 and a 52% ee (19 R2
PDF
Album
Supp Info
Full Research Paper
Published 17 Oct 2022
Graphical Abstract
  • –salen catalysts. Synthetic approach to our unsymmetrical Co–salen catalyst 2f for the asymmetric synthesis of α-aryloxy alcohols. Mechanochemical one-pot two-step synthesis of unsymmetrical salens 1a–h. Reaction conditions: salicylaldehyde (1 mmol) and diamine unilateral hydrochloride salt (2 mmol) were
PDF
Album
Supp Info
Letter
Published 10 Oct 2022

The asymmetric Henry reaction as synthetic tool for the preparation of the drugs linezolid and rivaroxaban

  • Martin Vrbický,
  • Karel Macek,
  • Jaroslav Pochobradský,
  • Jan Svoboda,
  • Miloš Sedlák and
  • Pavel Drabina

Beilstein J. Org. Chem. 2022, 18, 438–445, doi:10.3762/bjoc.18.46

Graphical Abstract
  • -1,2-diol, etc.) [11]. Beside this, approaches in which asymmetric synthesis is included are also applicable. Recently, the utilization of an asymmetric Henry reaction for the preparation of two oxazolidine-type drugs, namely linezolid (1) and rivaroxaban (2), has been described [12][13]. These
PDF
Album
Supp Info
Full Research Paper
Published 14 Apr 2022

Unexpected chiral vicinal tetrasubstituted diamines via borylcopper-mediated homocoupling of isatin imines

  • Marco Manenti,
  • Leonardo Lo Presti,
  • Giorgio Molteni and
  • Alessandra Silvani

Beilstein J. Org. Chem. 2022, 18, 303–308, doi:10.3762/bjoc.18.34

Graphical Abstract
  • Marco Manenti Leonardo Lo Presti Giorgio Molteni Alessandra Silvani Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, Milano, 20133, Italy 10.3762/bjoc.18.34 Abstract Addressing the asymmetric synthesis of oxindole-based α-aminoboronic acids, instead of the expected
  • oxindole-based α-aminoboronates. The asymmetric synthesis of diverse α-aminoboronic acids by diastereoselective Cu(I)-catalyzed borylation of N-tert-butanesulfinyl aldimines was described by Ellman and co-workers for the first time in 2008 [15] and next further developed with a more stable Cu(II) catalyst
PDF
Album
Supp Info
Letter
Published 10 Mar 2022

Recent advances in the asymmetric phosphoric acid-catalyzed synthesis of axially chiral compounds

  • Alemayehu Gashaw Woldegiorgis and
  • Xufeng Lin

Beilstein J. Org. Chem. 2021, 17, 2729–2764, doi:10.3762/bjoc.17.185

Graphical Abstract
  • only for pharmaceutical and fine chemical industries, but also for fragrance, flavor, agrochemical, and food industries [4]. Consequently, the importance of axially chiral compounds has been widely recognized in both academic and industrial chemical societies [5]. Therefore, asymmetric synthesis of
  • phosphoric acid-catalyzed synthesis of axially chiral compounds and to suggest that much more attention should be paid to these catalysts in order to promote asymmetric synthesis. Review 1. Enantioselective synthesis of atropisomeric biaryls Direct C–H functionalization strategies for the atroposelective
  • poor chemoselectivity [40]. However, the realization of this redox-neutral aryl–aryl cross-coupling is a formidable challenge. Therefore, the discovery of efficient catalysts and ligands to achieve high stereoselectivity is a fundamental issue in catalytic asymmetric synthesis [14]. In this section, we
PDF
Album
Review
Published 15 Nov 2021

Synthetic strategies toward 1,3-oxathiolane nucleoside analogues

  • Umesh P. Aher,
  • Dhananjai Srivastava,
  • Girij P. Singh and
  • Jayashree B. S

Beilstein J. Org. Chem. 2021, 17, 2680–2715, doi:10.3762/bjoc.17.182

Graphical Abstract
  • to treat HIV infection [58] as well as human chronic hepatitis B [59]. Using asymmetric synthesis or resolution with appropriate enzymes to prepare these enantiopure 1,3-oxathiolanes has gained extensive attention due to the good stereoselectivity, high efficiency, mild reaction conditions, and eco
  • nuclear Overhauser effect (NOE) NMR spectroscopy are useful tools to monitor and control the chirality when utilizing a modified 1,3-oxathiolane intermediate 65 obtained via enzyme-catalyzed selective hydrolysis. Hu et al. [61] established a green catalyst, STS, for the asymmetric synthesis of lamivudine
  • nucleoside 1a in a protocol by Vorbrüggen et al. In turn, using STS, this valuable asymmetric synthesis provided the intermediate 65, which led to lamivudine (1). Recently, Chen at al. [62] reported the isolation of the strain Klebsiella oxytoca from soil by a target-oriented process, and it was utilized as
PDF
Album
Review
Published 04 Nov 2021

Recent advances in organocatalytic asymmetric aza-Michael reactions of amines and amides

  • Pratibha Sharma,
  • Raakhi Gupta and
  • Raj K. Bansal

Beilstein J. Org. Chem. 2021, 17, 2585–2610, doi:10.3762/bjoc.17.173

Graphical Abstract
  • . Asymmetric synthesis of chiral N-functionalized heteroarenes. Asymmetric cascade aza-Michael−aldol reactions of α,β-unsaturated ketones with pyrroles. Intramolecular aza-Michael addition of conjugated ketones. Intramolecular enantioselective aza-Michael addition. Asymmetric aza-Michael addition of 4
  • -unsaturated aldehydes. Asymmetric aza-Michael organocatalytic quadruple cascade reaction. Asymmetric synthesis of chiral 4-naphthylquinoline-3-carbaldehydes. Funding The authors express gratitude to the authorities of the IIS (deemed to be University), Jaipur, India for providing the necessary research
PDF
Album
Review
Published 18 Oct 2021

α-Ketol and α-iminol rearrangements in synthetic organic and biosynthetic reactions

  • Scott Benz and
  • Andrew S. Murkin

Beilstein J. Org. Chem. 2021, 17, 2570–2584, doi:10.3762/bjoc.17.172

Graphical Abstract
  • features the 1,2-shift of an alkyl or aryl group. In the process, the hydroxy group is converted to a carbonyl and the aldehyde/ketone or imine is converted to an alcohol or amine. Such α-ketol/α-iminol rearrangements are used in a wide variety of synthetic applications including asymmetric synthesis
  • , tandem reactions, and the total synthesis and biosynthesis of natural products. This review explores the use of α-ketol rearrangements in these contexts over the past two decades. Keywords: acyloin rearrangement; asymmetric synthesis; iminol rearrangement; ketol rearrangement; tandem reactions
  • reactions through mid-2002 have been thoroughly discussed in a past review by Paquette [1]. The current review expands on that work by providing an updated account from mid-2002 through early 2021, including the following recently developed applications: asymmetric synthesis, total synthesis, tandem
PDF
Album
Review
Published 15 Oct 2021

Synthesis and investigation on optical and electrochemical properties of 2,4-diaryl-9-chloro-5,6,7,8-tetrahydroacridines

  • Najeh Tka,
  • Mohamed Adnene Hadj Ayed,
  • Mourad Ben Braiek,
  • Mahjoub Jabli and
  • Peter Langer

Beilstein J. Org. Chem. 2021, 17, 2450–2461, doi:10.3762/bjoc.17.162

Graphical Abstract
  • Najeh Tka Mohamed Adnene Hadj Ayed Mourad Ben Braiek Mahjoub Jabli Peter Langer Laboratory of Asymmetric Synthesis and Molecular Engineering for Organic Electronic Materials (LR18ES19), Monastir University, Faculty of Sciences of Monastir, Environment street, 5019 Monastir, Tunisia Universität
PDF
Album
Supp Info
Full Research Paper
Published 20 Sep 2021

Advances in mercury(II)-salt-mediated cyclization reactions of unsaturated bonds

  • Sumana Mandal,
  • Raju D. Chaudhari and
  • Goutam Biswas

Beilstein J. Org. Chem. 2021, 17, 2348–2376, doi:10.3762/bjoc.17.153

Graphical Abstract
  • corresponding bicyclic dihydropyrans 119 and 121, respectively (Scheme 36). Later, Namba et al. reported the synthesis of racemic vinylindoline derivatives 123 from N-tosylanilinoallylic alcohol derivative 122 by using 1–2 mol % of Hg(OTf)2 in CH2Cl2 at room temperature [90]. An asymmetric synthesis of
PDF
Album
Review
Published 09 Sep 2021

Halides as versatile anions in asymmetric anion-binding organocatalysis

  • Lukas Schifferer,
  • Martin Stinglhamer,
  • Kirandeep Kaur and
  • Olga García Macheño

Beilstein J. Org. Chem. 2021, 17, 2270–2286, doi:10.3762/bjoc.17.145

Graphical Abstract
  • examples, and the advance of anion-binding-catalyzed strategies involving more complex H-bonding networks clearly highlight that it is indeed possible to mimic enzyme-like structures with small-molecule catalysts for asymmetric synthesis. Conclusion In the past two decades, tremendous advances in the field
PDF
Album
Review
Published 01 Sep 2021

Asymmetric organocatalyzed synthesis of coumarin derivatives

  • Natália M. Moreira,
  • Lorena S. R. Martelli and
  • Arlene G. Corrêa

Beilstein J. Org. Chem. 2021, 17, 1952–1980, doi:10.3762/bjoc.17.128

Graphical Abstract
  • , the advances in asymmetric organocatalyzed synthesis of coumarin derivatives are discussed in this review, according to the mode of activation of the catalyst. Keywords: asymmetric synthesis; green chemistry; 2H-chromen-2-one; organocatalysis; Introduction Coumarins are important naturally occurring
  • ammonium salts derived from cinchona alkaloids [28]. Therefore, the asymmetric synthesis of coumarin derivatives is herein presented according to the activation mode, i.e., via covalent or non-covalent bonding. Furthermore, the use of bifunctional catalysts and multicatalysis are discussed as well
  • product 17 was obtained in 15 steps with 6% overall yield. Although chiral secondary amines have proved to be particularly useful catalysts, primary amines as organocatalysts in asymmetric synthesis have also played a significant role [36]. For instance, Kim et al. described the enantioselective Michael
PDF
Album
Review
Published 03 Aug 2021

2,4-Bis(arylethynyl)-9-chloro-5,6,7,8-tetrahydroacridines: synthesis and photophysical properties

  • Najeh Tka,
  • Mohamed Adnene Hadj Ayed,
  • Mourad Ben Braiek,
  • Mahjoub Jabli,
  • Noureddine Chaaben,
  • Kamel Alimi,
  • Stefan Jopp and
  • Peter Langer

Beilstein J. Org. Chem. 2021, 17, 1629–1640, doi:10.3762/bjoc.17.115

Graphical Abstract
  • Najeh Tka Mohamed Adnene Hadj Ayed Mourad Ben Braiek Mahjoub Jabli Noureddine Chaaben Kamel Alimi Stefan Jopp Peter Langer Asymmetric Synthesis and Molecular Engineering Laboratory for Organic Electronic Materials, Faculty of sciences of Monastir, Monastir university, Environment street, 5019
PDF
Album
Supp Info
Full Research Paper
Published 16 Jul 2021

N-tert-Butanesulfinyl imines in the asymmetric synthesis of nitrogen-containing heterocycles

  • Joseane A. Mendes,
  • Paulo R. R. Costa,
  • Miguel Yus,
  • Francisco Foubelo and
  • Camilla D. Buarque

Beilstein J. Org. Chem. 2021, 17, 1096–1140, doi:10.3762/bjoc.17.86

Graphical Abstract
  • heterocycles. The present work will comprehensively cover the most pertinent contributions to this research area from 2012 to 2020. We regret in advance that some contributions are excluded in order to maintain a concise format. Keywords: asymmetric synthesis; chiral auxiliary; natural products; nitrogen
  • important tool in the asymmetric synthesis of aziridines [25][26], α-amino acids [27][28], β-amino acids [23][29] and branched α-amines [30][31]. The Darzens-type asymmetric synthesis of N-(p-toluenesulfinyl)aziridine 2-carboxylate esters (7 and 8) was described through the addition of lithium α
  • -butanesulfonamide and applications in some nucleophilic additions, the next sections will describe the synthesis of several alkaloids according to the size of the heterocycles. We regret in advance that some contributions are excluded in order to maintain a concise format. Review Asymmetric synthesis of aziridines
PDF
Album
Review
Published 12 May 2021

Prins cyclization-mediated stereoselective synthesis of tetrahydropyrans and dihydropyrans: an inspection of twenty years

  • Asha Budakoti,
  • Pradip Kumar Mondal,
  • Prachi Verma and
  • Jagadish Khamrai

Beilstein J. Org. Chem. 2021, 17, 932–963, doi:10.3762/bjoc.17.77

Graphical Abstract
  • , followed by removal of trimethylsilane (Scheme 50). The authors further explored this strategy for the asymmetric synthesis of 3-vinylidene-substituted tetrahydropyran by taking the chiral propargylsilane. A diastereoselective route to cis-2,6-disubstituted tetrahydropyran-4-one 215 was explored by
PDF
Album
Review
Published 29 Apr 2021
Other Beilstein-Institut Open Science Activities